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1. INTRODUCTION

There is a naturally conjectured inequality for sums of random

variables that seems hard to prove. Consider Yi' I < i < n, indepen-

dent and identically distributed positive random variables. Let

W = e1Y+2Y2+...+e Y

with e. positive constants. The conjecture is this: among all ways1

of varying e. that preserve the mean (so e1+...+e stays fixed),

the tails of W are smallest when all e. are equal.1

It is not hard to show that the variance of W (or the expected

value of any convex function) is smallest when all e. are equal. It
1

often seems as if much more is true.

For symmetric distributions a fairly general result is known.

Let f be the common density of YI,...,Yn. Define e = (el'e2,...,en

Proschan (1965) showed that if f is symmetric (about zero) and log f

is concave, then P[W > t] is Schur-convex in e for t > 0.

For positive random variables (having asymmetric distributions)

very little is known. We have chosen to work mainly with the gamma

distribution. Our results are summarized in the following.

Let Y. have a Gamma(a,6) density f(y) - e- 6 y -1 6/F() on

(0,-). For n=2 we show

P[W < t] is Schur-convex in 6 if

t <a( 12)/a and

Dist
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P[W > t] is Schur-convex in 8 if

t > (a +)(el+62)/6.

Specializing to a standard exponential with a=6i, both tails are

smallest when el= 2. Here the left tail starts any place left of

the mean (= i+2 , and the right tail starts any place to the right

of the mean times 3/2. No simple convexity holds between these two

values.

For general n > 2, our results go in the same direction although

they are cruder. For a sum of n Gamma(a,B) variables

P[W < t] is Schur-convex for e in the

region {0: min ei > tS/(na+l)}, and
1< i<n

P[W _ t] is Schur-convex in for

t > (na+l)(1 +1?2 +..-+9 n)/s,
n

Our results cover positive linear combinations of chi-square variables.

These arise in the asymptotic distributions of nonparametric goodness of

fit tests. See Chernoff and Lehmann (1954) and Moore (1978) and Alvo,

Cabilio and Fiegen (1982) (for the average Kendall tau statistic). The

results of this paper apply because a linear combination of the form
42 2

* clXn + c2Xm  may be written as

n+m

i=l

6 * *

~. ~ a
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where 6i = 2c1 for i=l,...,n and 6i = 2c2  for i=n+l,...,n+m,

and the independent gamma variables Yi each have shape parameter
ii

a ff and 6 = 1.I2
Positive linear combinations of chi-square variables also arise when

positive linear combinations of sample variances from normal populations

are formed.

Linear combinations of chi-square variables can also occur as

limiting distributions of U-statistics. For example, let h(x,y) be

a symmetric function with associated U-statistic

U = h(Xi,X.)
n () i<j

where the X. are independent identically distributed random variables1

with distribution function F. Assume E(h2 (XI,X2)) is positive and

finite. Define h (x) to be E(h(x,X)) and i to be the variance

of h1 (X2). Let e = Eh(XIX2). If i is zero, then n(U -6)

converges in distritubion to a constant plus a linear combination of

independent chi-square random variables with one degree of freedom.

Details and examples can be found in Gregory (1977) or Serfling (1980)

Section 5.5.2.

Our results may be applied to study linear combinations of exponen-

tial variables. These arise, for example, as waiting time distributions

in pure birth processes (see Feller (1971), page 41).

We also give results for the Weibull distribution when n=2: Let

the Yi's have a Weibull (S,y) density

f(y) y P-le-YY ( )

. '.
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We show that P[W < to] is Schur-concave in 0 if

1

(a) to > (6 1+2((l + I)/Y)8  when 5 > I

or

il-

(b) t (ei+2)((l + )/Y) 2 when 0 < a < 1
(b to 12 ~26

Our results show that the tail of the linear combination W is

minimized when all the coefficients 0. are equal. This is analogous1

to results for binomial random variables in the master's thesis of

Chebychev and in the work of Hoeffding (1956) and Gleser (1975) which

are described in Section K of Chapter 12 of Marshall and Olkin (1979).

(Our results resemble Gleser's but the inequalities go in the opposite

direction.) We believe similar results hold much more generally, e.g.,

for all naturally occurring exponential families. We have been unable

to provide a general theory.

It is possible to consider the question of Schur-convexity or

concavity in other metrics for the e i's and it should be noted that

Tong (1980) has shown for gamma random variables that P(W < t) is

strictly Schur-concave in (611 ,... ,e) for all positive t and
n

n > 2.

In Section 2 of this paper we treat the case of a positive linear

combination of two independent identically distributed gamma random

variables. In Section 3 we look at this case for a Weibull distribution.
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In Section 4 we examine the distribution function of a positive linear

combination of n independent identically distributed gamma random

variables.

2. POSITIVE LINEAR COMBINATIONS OF TWO GAIA VARIABLES

In this section we set n=2. Without loss of generality we assume

S1+e2 - I and assume the scale factor a is one in the Gamma (a,S)

distribution. Then with p=e 1  we have

W = PY1 + (1-p)Y 2

where 0 < p < 1 and the Y. are independent random variables each with

density

f(x) =- x e- X/:()()

for x , 0, where i is positive.

In the case n= 2 the Schur-convexity or Schur-concavitv in

of the distribution function of W is determined by examining the

sign of the following derivative

-pP(PYI + (I-P)Y2 < t)

* 1

where 1 < p < 1.
2

We show for all p there exists a value t0 (p) such that the

derivative is positive for t less than t0 (p) and negative for t

A%
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greater than to(p). Also to(p) lies between a and a + .

Thus P(W < t) is Schur-concave in 6 for t < a + I and Schur-
2

convex for t < a. Furthermore P(W < t) is neither Schur-concave

nor Schur-convex in 6 for a <t < a+ - This result was observed

empirically by Solomon (1961) in distribution function tables for the

case of a = 2 (when the gamma variable is a multiple of a chi-square

variable with one degree of freedom). The result was shown analytically

by Diaconis in unpublished results for a = 1 (when the gamma variable

is an exponential random variable). See Marshall and Olkin (1979),

Chapter 12, Theorem K.3.

Notation: For the rest of this section YI,Y2 are independent

a-l-x
gamma random variables with density x e /f(a) and p will alwavs

satisfy 1 1.

Furthermore, we will often write

F (t) = P[PY + (-P)Y 2 < t]
p12

Lemma 1: The sign of

pP[PY + (l-P)Y < t] j

is the same as the sign of S t) defined by

1 1 It i
S (t) (p-x)xa- (l-x) e dx
p J

al ;,
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where X = (1-) In fact,

~-P pY1+(l-)Y 2<J =KS (t)

2 a+l Jt /(l-p)

where K e 1 ~-)] (Pc)

Proof:

F ~ ~ -(t)) y u e- ud

implies

F(t) P (tY (tp ci-l -y-pd
p (a) i-p F~

Making the change of variable x P-v yields

t-~ (t

1(r-tx/p) tx ci e p t-tx"C Ot-1 e i-p~
-F (t) 2 ( ) dx

(t -L (l-p) i-p

t 2____ e (l-p) rl a- \tx
- i(p-x)[x(l-x)] e dx

'P~-p) (tr (cz)) 2 JO

a where

1 1_ 2p-
p 10 PUP QED

p (i-p p~i-p

e '.r
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1
Remark: The next lemma shows that for - < p < 1, the function

2

e- S (t) is strictly decreasing in t and thus can have at most one
p

change of sign. From the definition of S (t) it is clear that
P

S (0) 0 and thut S (t) < 0 for all sufficiently large t. Thusp p

there exists c0 (p) 0 such that

F (t) > 0 for t < to(p) and

F (t) < 0 for t > to(p)P 0

.1.e7ra2 For < p < 1, the function e pt (t) is strictly
2 p

decreaFin, in t.

Proof:

-'Pts (t) =i ep-xxxp- d=- lx)- I L(x-p)
S t(PXx (1xe dx

so that

-Pt t = 2 )L-1 z-let(x-P)d
L e- S (t) (p-x) x (I-x) e UAt p 0

which is negative. QFD

The next lemmas 3, 4, and 5 are used in the proof of Theorem 1

which states that t0 (p) is less than (a + -).

0

.<-.~..
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Lemma 3: F (t) has the same sign as
;p p

1i e-t/h(s)a11
e h s 2 - [(l-2s)s (1-s) Ids

0 (h(s))2~

where h(s) = ps+ (1-p)(1-s).

Proof:

f -I e-x a-1 -v
F (t) y dxdv

where integration is over the values such that x > 0, y > 0 and

px+ (1-p)y < t.

Substituting r = x+y and s = x/(x+y) this becomes

F (t) F(a) 2 [1 a-1h1s) 2a-ei rdrt= s (l-s) ds r d

so that

t2a l - t/h(s)

F (t) - e [(l-2s)s-1 (1-s) Ids QED
p 'F(a) 2 0  (h(s)) 2a+1

Lemma 4: Define

log(l) -log(-)

f (x,V) = X

x y

for x # y and f(x,x) =x. Then f(x,y) is strictly Schur-concave.
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5' Proof. Note that

X+Y x 2+y 2_ ): (l x -- X og(y/x)

So for x v we must show that

x+v Ix2 +V2

2-x 2 log(y/x)

or equi\,alei: I

2 2v -x < 1- ,,,oF(v/x)

x +y

or eqpi-'a.,nt1v (substituting u = y/x)

u2+l < log u for u > 1

u2 +1

B.L", -ides are equal when u =1 so it suffices to differentiate

V bth sid4cs and show that

4u 1
4u2 < - for u > 1

2 u
(u +1)

This is immediate. QED

Lemma 5: For x > 0 define g(x) =1 + log x.x

(a) If 0 v < z and v+z < 2, then g(y) > g(z).

(b) if g(y+z) g(y-z), then g(y+u) > g(v-u) for 0 < u < z.

. , . . . .. . . • . - . - , . . . - ... •... .. . .... .



Proof:

(a) For y < z, g(y) > g(z) is equivalent to f(y,z) < 1 where

f is the function from the previous lemma. By Schur-concavity

f(y,z) < f(Y+Z Y+z) = (y+z)/2
2'2

so that g(y) > g(z) when (y+z)/2 < 1.

(b) For r < s, g(r) < g(s) if and only if f(r,s) > 1.

Similarly g(r) < g(s) if and only if f(r,s) > 1. Thus

g(y+z) > g(y-z) implies f(y-z, y+z) > 1. Now Schur-concavity yields

f(y-u,y+u) > f(y-z,v+z) > 1 for 0 < u < z. Thus g(y+u) > g(y-u)

as desired. QED

Theorem 1: (See Remark preceding lemma 2).

For p >

t0 (p) < + 2

that is, F (t) < 0 for t > a +1
3o p -- 2

Proof: We use the result of lemma 3. The function
i -usco -owtha

(l-2s)s -l(l-s),-  is odd about the value s = Thus to show that
a2

F (t) <0, it suffices to show that
ap p

4.

-t/h(s) -t/h(l-s)-4e e

(h(s))
2a+ l  (h(l-s))

2o+ l

_,-.
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1

for 0 < s < . By taking logs and doing some algebra, this is seen

to be equivalent to

c o (-- -- > c [h(l-s))

h(s) + l fh(s)>h(l-s) + Jogf----)j

t

where c = Now use lemma 5(a). Since the function h(s)
2oz+l

= s+ (1-T)(1-s) is increasing for p > ., the previous inequality

will hold if

h(s ) + h(l-s) < 2
c c -

but h(s) + h(1-s) = I for all s, so this is equivalent to c >
12

or t> a + . QED

The following theorem gives a useful bound on t0 (p) for small p

or for small a.

Theorem 2: For p > 1 we have to(p) > ( + (p) where
we 0 2a~ ~p

W~p = log~~ log()

1 1-p p

We have Y(p) < 1 for p > and lim T(p) = 1. A small table is
2 .1P2

given below.
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p

.55 .9933

.60 .9731

.65 .9389

.70 .8897

.75 .8240

.80 .7394

.85 .6319

.90 4944

For ai 1, P = .80, the tables of Solomon (1960) give to(p) .79 and

the bound is .7394.

Proof: We repeat the argument of the earlier theorem (proving
to(p) <a + i) but with the inequalities reversed.

To show F (t) > 0, it suffices to showpP

(* -- + log hs < c + logf(h(l-s)1
h(s) hL h(l-s) c j

for 0 2 hr ci Observe that the function h(s) is

increasing and h(s) + h(l-s) = 1. Thus lemma 5 part (b) says that

(*) will be true if

-- + log (A) < c + log (h)
* h(0) hc ( h1)

Using h(O) l-p, h(1) = p and a little algebra this becomes

1 p) > c QED

1P p.1
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The following lemma will be needed in the proof of Theorem 3.

Lemma 6:

Sa-1 ci-l )tx
[tx(l-x) + ct(l-2x)-x (l-x) e dx 0

Proof:

x-i -I
- x (l-x) = a(l-2x)x (l-x)

'Ix

so that integration by parts gives

f[i t-itX-i \i

[xn(l-x)] ite dx = - [a(l-2x)x -l(l-x) -le XtXdx

• 0 10

'oving both integrals to the same side of the equation and then combining

them into one integral completes the proof. QED

Theorem 3: For t < a and I- < p <1,

F (t) > 0
aP p

Proof: We have earlier used the fact (Lemma 1) that p Fp(t) has

the same sign as

Sp(t) = f (P-X) xL- n(-x)a-l eXtXdx

0

where X =21 Therefore it suffices to show that S (t) > 0
p(l-p) p



15

for t < a. This can be achieved by noting that S (t) has the same
p

sign as eS p(t) where 0 is any smooth function depending on p

and t. Now S (0) is positive and if e S (t) is increasing in tP p

for t < a, then S (t) must be positive for t < a. So it sufficesp

to show that for some smooth function ; we have (e ) > 0

for t < a.

For any function 0 we have

(e~~~S a- - tx
W )p) (p-x)(Xx+k)x'- (1-x)a- e dx

with k = a By the preceding lemma we may replace (p-x)(kx+k)

in the above integral by

(*) (p-x)(Cx+k) + c[\tx(l-x) + a(1-2x)]

without changing the value of the integral. Here c is any quantity whose

value does not depend on x but may depend on t and p. By appropriate

choice of c and k, the expression (*) can be made into a constant,

that is, an expression not involving x. Choosing c = -i/t eliminates

2the quadratic (x ) term. Next we choose k - (2a/t) - X(l-p) to

eliminate the linear term. With these choices the constant term becomes

pk+ca = (2p-l)(-l) 1 > 0 for t < a. Thus -L (e S (t)) > 0 for
t at P

t < a where is determined by (2a/t) - X(l-p). QED
at,
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3. POSITIVE LINEAR COMBINATIONS OF TWO WEIBULL VARIABLES

In this section it is shown that a positive linear combination

1 YI+2 Y,) of two independent identically distributed Weibull random

variables Y. has a distribution function which is Schur-concave in

for sufficiently large argument. Without loss of generality we set

1 and we set the scale factor of the Weibull distribution to

one. Then P YI+ * 2Y2 < t) is Schur-concave in if

1

(a' t (1 + 1 when 8 1>

cr

1 1-8
(b) t > (1 + 1)3 2 when 0 < 8 < 1 .

-* Again the Schur-concavity will follow if the derivative with respect

to p of the distribution function P[pYI+(l-p)Y2 < t] is negative in

an apprcnriate region. Theorem 4 developes conditions under which the

derivativt: is negative and Corollary 1 interprets them to provide the

result abnre.

Notation: Define

Fp(t) = P[pY1 + (l-p)Y 2 < t]

Theorem 4: Let YI,Y2 be independent Weibull random variables with

density given by 8x -lexp(-x ). If < p < 1 and
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t > (1 +-L)M

then -L F (t) < 0. Here

M=i for > 1

p + (1-p)B for B < 1

Corollary 1: Under the assumptions of Theorem 4, we have

'-F F(t) < 0 if

1

(a) t > (1 +-L) when 8 > 1

1 1-61i I-

(b) t > (1 + - 6 2 when 0 < a < .
* 26

Proof: Part (a) follows immediately from the theorem. It is

necessary to find an upper bound for p + (l-p) independent of p

for part (b). Because for < p < 1,

{p + (l-p) }

is a decreasing function of p, the maximum occurs for p = i .e.
-2'

1 + 12 1-6

1 1-S

Thus t6 > (I + 2L)21- B , i.e. t > (1 + -1) 2 6 QED

262

.].
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The following lemma is used in the proof of Theorem 4.

Lemma 7: For independent Weibull variables Yi with density given

in Theorem 4, we have

1 ep-t (S))

F p(t) = t (l-2s)s B--(l-s) -L 2+1 ds

where €is) = s + (l-s) and h(s) = ps + (1-p)(1-s).

Proof of Lemma: Change from Cartesian coordinates to r,s, defined
x

by r = x+y, s -y Then
x+y*

F =I [ t/h(s)
F (t) ' f/hs [rf(rs)f(r(l-s))Idrds

p jo JO

and

? =[i2 st ((l-s) t
S (t) (1-2s) f((hst)]d

j o p ' 0h ( s ) 3

where h(s) = ps + (l-p)(l-s) and f is the Weibull density. QED

Proof of Theorem 4: Use Lemma 7 and let g denote the expression

in brackets inside the integral for -p Fp(t). The function- -1

(l-2s)s -l(l-s) 8-  is odd about the value s = . Therefore, to prove
2

Fp(t) < 0, it suffices to show that g(s) < g(l-s) for 0 < s < 1

Taking logs this becomes

* -S-
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tSB(s) + (28+1) logh(s) > t Bl-s) + (28+1) log h(l-s)

h(s) 8  h(l-s)B

or equivalently

c4s) + log (h(s)' > cO(-s) + log ( 8h(l-s)

6 CO c(-s) (h(15) )
h(s) ct(s) h(l-s) 8  l c4(ls)

[, St8
where 28+ To obtain this last expression we have used the

fact that €(s) = (l-s). By Lemma 5(a) (concerning the function

1+ log x) we need only show
x

i h(s)e < h(l-s) a() Ci (S) c$(1-s) 'and

h(s) h(l-s)

(ii) h + < 2
c'(s) c (l-s) -

for 0 < s < . Note that (i) is true because h is strictly increasing

when p > 1 and (ii) will be true if
2

Maximum Sh s  + - ls < 2c

0< S < 1 s + (l-s)8  -

In the lemma which follows, this maximum is shown to equal 1 for 8 > I

pB (l~~~p) 8t8  anthpro

and to equal p + l-p for B < 1. Now use c 2 and the proof

is complete. QED

Lemma 8: Define

= h(s) + h(l-s)

s + (l-s)
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Is, Then

4i for 6>1i
V!

Maximur' (s)

O s 1 p8 + (-p) 6 for P <1

.11

Proof: Remember that h(s) ps + (l-p)(l-s) and -- < p < 1.

Consider first £ -1 1. A stationary point must satisfy

= log .,(s) = 0 which is equivalent to

-(2p-l)(h(s) h(l-s)' - ) 6(s - (1-s) - )

h(s)' + h(l-s) s + (1-s)

But for 0 , s < 5 it is easy to verify that h(s) + h(l-s) > s + (l-s)6

E-1 f-i 1 -1 B-1
and h(s) - h(1-s) £'-  < s - - (t-s) . Since 0 < 2P-, 1, the

left hand sidc of (*) is itrictlv less than the right hand side. Thus

. has no stationary point in the open interval (0,) and - must
1

achieve its maximum at 0 or -2"

;(0) = p + (i-p) B > 1 =

Now consider 5 > 1.

-- [h(s)s + h(l-s)6 ] = a(l-2s)[h(l-s) 6  - h(s) B-1 > 0
ap

1 1
for O<s <s Therefore (s) >_ 0 for 0 _ s < - The subscript

on , indicates the value of p. Since p (s) increases with p we

haveS) = = (sT(1) as desired. QED

P

I , " , " %,o " , " ,,, " ,, % " " " , " % % " , , ,, % "'" % % . ' ' ' % • " . "%
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4. POSITIVE LINEAR COMBINATION OF N GAMMA VARIABLES

We show that the distribution function of a positive linear com-

bination of n independent gamma random variables is Schur-concave in

the coefficients when the argument of the distribution function is

sufficiently large. This implies that the right tail probabilities

are Schur-convex. The "sufficiently large" bound for the argument

appears to be too large when compared with the precise results of

Section 2 for n = 2 and can probably be improved. Corollary 2 shows

that for independent Y. each with density x -e-X /r(a) and positive

n
i, i =l,...,n, P( 6 £.Yi < t) is Schur-concave in e for

n
t > (na + 1) e e. For n = 2 and e, - p and 82 = 1-p where

-- i=l 1

0 < p < 1 this lower bound for t is (2a+l) which is too large by

a factor of 2 according to the results of Section 2.

Theorem 5: Let YI,Y 2,...,Yn be i.i.d. gamma random variables

with density xa-1e-X/F(a) and 6 = (619,29,... 9 ) where e >

for all i. Define

n
Pt(e) = [ a.y. < ti.

As a function of e, Pt (6) is symmetric and convex (and therefore Schur-

convex) inside the region {0:t < (na+l)Min 1); P t(e) is symmetric and

concave (and therefore Schur-concave) inside the region {9:t > (na+l)Max e*.
*1
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n
Corollary 2: Pt (6) is Schur-concave in e for t > (na+l) .

i=l
n n

Proof: Because max e K., we have that t > (na+l)
i=l i=l

implies that t ' (na+l)max Theorem 5 implies that P () is

n
symmetric and concave for e inside the region {C:t> (na+l) .

i=l1

Thus P (7) is Sc'hur-concave there. QED
t

In what follows, t is held fixed at some arbitrary positive

value. The basic tool in the proof of Theorem 5 is the following

result due essentially to Marhshall and Proschan (1965). (See Chapter

11, page 288 of Marshall and Olkin (1979).)

Proposition: If XX29 ...X Xn  are exchangeable and g is a

n
continuous convex lunction, then (al,a2V .... a) = Eg( 1 aiX.) is
* ~i= 1

sv,.TThetr:c and conr'vo:.-. It is also true upon replacing convex by concave.

n
Proof of Theorem 5: For all i define Si = Y/( Y ). The

1 'k= 1
n

vector (S.,S?....' S )  is exchangeable and independent of ' Y.
n-i~l

These are standard properties.

n
Define F(u) = P[ ' Y. < h]

i=l

i 'u na-l -x
"X e dx/r(na).

Then

• .-. .. .. i. . .-. ,' .... i .. ..-...- ,S. "-

$ .'-' . ;. , .,?.., ..,.,.. " . .. ,.. ..".."":..' ,"-. - -. ..,, ,. . ..,"- ,, .5 ,'
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n n n
P[ i.y. < t] P[( .S.)( Y) <t]

EP ij Ei Sl

= EP[(ZeiS1)(lY i ) < tI0i i

= EF(t/7.S.) = Eg(YeiS )

where g(u) = F(t/u). A short calculation shows that

n -t/u
g"(u) = t(noi+l) - tI t e

Thus g is convex for u t and concave for 0 < u < t . For
- na+l -

in the region {:t < (na+l)'Iin - . ,-- 1

tS2 S. >
1 1 - na+l"

Thus Eg( 7.S.) is symmetric and convex by the proposition. Similarly,
-1

for in :t ' (na+l)Max .},

6iSi  nz+l

and therefore Eg(YiS) is symmetric and concave. QED
ona.0

" U'' . '" , '''''' , - ,.... -'-' . '- . . ,' , - j " , " . . - . .- . , - , . . . . . . - . . . . , .
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